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SUMMARY

We have extended the classical terrain-following coordinate transformation of Gal–Chen and Somerville
to a broad class of time-dependent vertical domains. The proposed extension facilitates modelling of
undulating vertical boundaries in various areas of computational �uid dynamics. The theoretical devel-
opment and the e�cient numerical implementation have been documented in the context of the generic
Eulerian=semi-Lagrangian, non-oscillatory forward in time (NFT), nonhydrostatic model framework. In
particular, it allows the simulation of strati�ed �ows with intricate geometric, time-dependent boundary
forcings, either at the top or at the bottom of the domain. We have applied our modelling framework in
the direct numerical simulation of the celebrated laboratory experiment of Plumb and McEwan creating
the numerical equivalent to their quasi-biennial oscillation (QBO) analogue. The QBO represents a con-
spicuous example of a fundamental dynamical mechanism with challenging detail, which is di�cult to
deduce from experimental evidence alone. A series of 2D and 3D simulations demonstrate the ability to
reproduce the laboratory results. The numerical experiments identify the developing periodically revers-
ing mean �ow pattern primarily as a wave–wave mean �ow interaction-driven phenomenon. The results
not only enhance the con�dence in the numerical approach but further elevate the importance of the
laboratory setup in its fundamental similarity to the atmosphere, while allowing the study of the prin-
cipal atmospheric mechanisms and their numerical realizability in a con�ned ‘laboratory’ environment.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The quasi-biennial oscillation (QBO) represents the dominant variability in the equatorial
stratosphere [1]. It exhibits a fundamental dynamical mechanism with challenging detail: the
interaction of propagating waves with a mean �ow. Holton and Lindzen [2, 3] were among
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the �rst to present a conceptual model of the QBO describing this interaction. In a viscous,
non-rotating‡ Boussinesq �uid, the interaction can be described by the averaged momentum
equations in a horizontally periodic domain as
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where U := �uxy denotes the horizontally averaged (mean) �ow, � denotes the kinematic vis-
cosity and F := u′w′ xy expresses the averaged nonlinear momentum �ux.§ Most atmospheric
research of the QBO [1] is devoted to �nding the precise physical origins of the rhs of
Equation (1) and their numerical realizability in the context of numerical weather prediction
and climate models. In spite of numerous studies, see Reference [1] for a recent review,
a complete understanding of the QBO eludes the e�orts.
The principal mechanism of the QBO was demonstrated in the laboratory experiment of

Plumb and McEwan [5]. The laboratory analogue of the stratospheric equatorial oscillation
consists of a cylindrical annulus �lled with density-strati�ed salty water, forced at the lower
boundary by an oscillating membrane. At su�ciently large forcing amplitude the wave motion
generates a longer period zonal mean �ow oscillation. The laboratory experiment is often
employed to explain the basic mechanism of the atmospheric QBO [1]. However, it also
has been criticized for its apparent fundamental di�erence to the QBO [6]. In the laboratory,
the average momentum-�ux convergence has been attributed almost exclusively to viscous
and thermal dissipation of internal waves [5, 7, 8]. In the atmosphere, wave transience and
subsequent breaking are considered chronologically more important primary causes of the
zonal mean �ow oscillation [6, 8]. Furthermore, it is argued that a continuous spectrum of
waves, rather than a discrete pair of phase speeds, contributes to the QBO [8]. Consequently,
a direct application of the analysis of the laboratory results to atmospheric observations has
been questioned [6].
We employ a direct numerical simulation of the QBO analogue to resolve the apparent

di�erence in interpretation. We demonstrate that our numerical model is able to reproduce
the laboratory results while allowing a detailed analysis of the precise origin of the averaged
momentum �ux. We �nd that wave–wave mean �ow interactions (see Reference [9] for a
discussion) are the chronologically more important primary cause of the zonal mean zonal
�ow oscillation in the laboratory experiment—in analogy to the e�ect of wave transience
in a compressible atmosphere [6]. It elevates the importance of the laboratory setup for its
fundamental similarity to the atmosphere. This allows us to utilize the conceptual simplicity
of the experiment to investigate various aspects of numerical realizability and parametric
dependence of the atmospheric QBO in a well-observed con�ned ‘laboratory’ environment.
Ultimately, it is our aim to provide a catalogue of sensitivities that can be employed in
numerical weather prediction and climate models to enable the successful simulation of such
a mean-�ow oscillation.

‡The QBO has its maximum at the equator where the Coriolis parameter f=0.
§In the context of time-varying mean �ow oscillations it is important to note that the second ‘Eliassen–Palm
theorem’ [4], stating the height independence of the vertical �ux of horizontal momentum u′w′ xy , refers to a steady
state in the absence of damping and critical levels.
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2. THE NUMERICAL MODEL

The equations of motion for a non-rotating, density-strati�ed viscous Boussinesq �uid—
an appropriate approximation for salty water [10]—are

∇ · (�0v)=0
Dv
Dt
= − ∇�′+ g

�′

�0
+
1
�0

∇ · �
D�′

Dt
=�∇2�′ − v · ∇�e

(2)

Here, the operators D=Dt, ∇, and ∇· symbolize the material derivative, gradient, and diver-
gence; v denotes the velocity vector; �′ and �′ denote, respectively, density and normalized-
pressure perturbations with respect to the static ambient state characterized by the linearly
strati�ed pro�le �e; g symbolizes the gravity vector, and �0 a constant reference density. ∇·�
is the divergence of the viscous stress tensor (a kinematic viscosity �=1:004 × 10−6 m2 s−1

is assumed); and � (=1:5× 10−9 m2 s−1) is the di�usivity of salt in water.
Equations (2) are cast in a time-dependent curvilinear framework [11, 12], employing the

generalized Gal–Chen coordinate transformation

�t= t; �x= x; �y=y; �z = H0
z − zs(x; y; t)

H (x; y; t)− zs(x; y; t) (3)

whose theoretical development and e�cient numerical implementation were discussed thor-
oughly in Reference [13]. Transformation (3) allows for time-dependent upper, H (x; y; t), and
lower, zs(x; y; t), boundary forcings without small-amplitude approximations. In particular, it
enables the direct numerical simulation of the laboratory experiment. In standard atmospheric
models a major uncertainty arises from the lack of knowledge of the required wave forcing
and its numerical realizability, rendering a detailed analysis of the QBO more di�cult.
The governing equations (2) are integrated numerically in the transformed space using a

second-order-accurate, optionally semi-Lagrangian or Eulerian, nonoscillatory forward-in-time
(NFT) approach, broadly documented in the literature (cf. Reference [14] for a recent re-
view; alternatively see Reference [12] in the same issue for a brief summary). Here we
employ the �ux-form Eulerian, semi-implicit version of the algorithm based on the mono-
tone MPDATA transport scheme [15]. All prognostic equations in (2) are integrated along
�ow trajectories using the trapezoidal rule, treating all forcings on the rhs implicitly; the vis-
cous and di�usive terms are computed to �rst-order accuracy, assuming ∇·�n+1 =
∇·�n + O(�t) (and similar for �∇2�′); see Section 3.5.4 in Reference [15]. Together with
the curvilinearity of the coordinates, this leads to a complicated elliptic problem for pressure
(see Appendix A in Reference [11] for the complete description) solved iteratively using the
preconditioned generalized conjugate-residual approach—a non-symmetric Krylov-subspace
solver [16].

3. THE QUASI-BIENNIAL OSCILLATION ANALOGUE

The laboratory experiment of Plumb and McEwan was conducted in a transparent cylin-
drical annulus (radii a=0:183 m and b=0:3 m) �lled with density-strati�ed salty water to
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a height of zab=0:43 m. The lower boundary consisted of a thin rubber membrane which
oscillated with a constant frequency !0 [5]. In our numerical simulation of their labora-
tory setup we assume an initially stagnant, viscous Boussinesq �uid forced by an oscillating
lower boundary. The cylindrical setup of the laboratory tank is replaced with a zonally-
periodic, rectangular¶ computational domain consisting of 639× 38× 188 grid intervals with
Lx=2�(a + b)=2, Ly= b − a, Lz=0:6 m and impermeable boundaries. The lower boundary
shape is speci�ed as

zs(x; y; t)= � sin
(
�
Ly
y
)
sin

(
2�s
Lx
x
)
sin(!0t) (4)

with s=8 and forcing amplitude �=0:008m. The initial condition is assumed identical to the
static ambient state with a buoyancy frequency N =1:88s−1. The integration time was several
hours with a time-step dt=0:05 s. The distance Lz − zab is designated to an absorbing layer,
which suppresses spurious wave re�ection from the upper rigid lid, simulating an in�nite
water tank. In our 3D simulations we �nd, however, re�ections from the upper boundary to
be negligible in agreement with laboratory observations [5].
Starting from a zero background �ow we observe symmetrical, upward propagating, standing

gravity waves in the horizontal. After approximately 1–2 h (in agreement with laboratory
observations [5])‖ the wave �eld distorts. A single horizontal and a range of vertical wave
numbers are observed in each phase of the zonal mean �ow oscillation. The internal waves
interfere with each other in the vertical, and spatial patterns of reinforcement and cancellation
appear. Subsequently, the coherent wave structures break down, and locally zonal �ow shear
layers of critical magnitude form, giving rise to an apparent downward propagation of a mean
zonal �ow pattern which reverses sign in a periodic manner. Figure 1 shows time-height
cross-sections of the zonal mean �ow for two representative simulations. Table I summarizes
the quantitative comparison between our simulations and the laboratory analogue of Plumb
and McEwan. The table also shows results of the experiment repeated at the university of
Kyoto [18] where the oscillating membrane was placed at the top of an annulus initiating an
oscillation with an apparent upward propagation of the mean �ow. In this case the correct
physical lower boundary is a rigid lid and the upper boundary entering the transformation in
(3) is given as

H (x; y; t) = H0 − zs(x; y; t) (5)

Notable in the results of Table I is our inability to reproduce the precise period of the
original Plumb and McEwan experiment; yet by doubling the frequency or the physical do-
main (viz. the horizontal wavelength) we obtain comparable periods. However, our numerical
analogue of the Kyoto experiment setup compares favourably. In particular, the �lmed time
evolution of the experiment [18] agrees well with our numerical simulation. In all experiments
the observed mean �ow magnitude is consistent with predictions from linear theory of critical

¶A better comparability of simulated and laboratory results for larger annuli (see Table I) suggests that curvature
e�ects (see Reference [17] for a discussion) may be worth investigating; we hope to address this in future.

‖We �nd that we can save substantial CPU time (without a�ecting the results) by forcing an initial oscillation
with a background �ow in the near-membrane layers. This mechanism has been used in all simulations
summarized in Table I.
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Figure 1. Time-height cross-sections of the zonal mean �ow velocity at y=Ly=2 in our numerical
simulations. Plate a shows the Plumb and McEwan numerical analogue [case (c) in Table I] and
plate (b) shows our results for the Kyoto laboratory setup [case (d) in Table I]. Plate (a) compares

with Figure 10 in Reference [5]. The units are in ms−1.

Table I. Comparison of the zonal mean �ow oscillations in the laboratory experiments [Lab] (Plumb
and McEwan [P+E] and the university of Kyoto [Kyoto]) and in our numerical simulations [Num].

Description∗ Lx [m] Ly [m] Lz [m] � [mm] !0 [s−1] N [s−1] T0 [min] z0 [m] A0 [ms−1]

(a) Lab: P+E 1.52 0.117 0.43 8.0 0.43 1.88 82 0.2 0.0085
(b) Lab: Kyoto 3.14 0.2 0.6 11.0 0.40 1.60 76 — —
(c) Num: P+E 1.52 0.117 0.6(0.43) 8.0 0.43 1.88 32 0.18 0.009
(d) Num: Kyoto 3.14 0.2 0.6 11.0 0.40 1.60 76 0.3 0.023
(e) Num: P+E 3.14 0.2 0.6(0.43) 8.0 0.43 1.88 100 0.4 0.022
(f) Num: P+E 1.52 0.117 0.6(0.43) 8.0 0.86 1.88 106 0.4 0.025

T0, z0, and A0 symbolize the period, the vertical extent, and the observed maximum mean-�ow speed of the zonal
mean zonal �ow oscillation, respectively, for the given domain (viz. wave length), forcing frequency !0, forcing
amplitude �, and strati�cation N .
∗ The value for T0 in the Kyoto setup is deduced from the movie found in Reference [18]; z0 and A0 are not given.
The value for N in the P+E setup is obtained from the derived values of Figure 10 in Reference [5], T0 = 476,
d0 = 0:17, and their formulas 4.10–4.12. All other values are taken as stated in the cited references.

levels (i.e. postulated by the singularity of the Taylor–Goldstein equation [19, pp. 320–324])

Ucrit =
!0

(2�s=Lx)
(6)

and we �nd that the period of the oscillation is sensitive to Ucrit.
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4. REMARKS

We �nd numerical evidence that the periodically reversing mean �ow pattern in the laboratory
analogue is driven by internal wave–wave mean �ow interactions with a non-zero momentum
�ux divergence primarily resulting from vertical wave interference, subsequent wave momen-
tum �ux changes and locally, critical layer wave attenuation enhanced by wave breaking.
A comprehensive analysis of the gathered numerical data underline our conclusions and

reveal a di�erent interpretation of the oscillation mechanism than that described in
Reference [7]. This is discussed in Reference [20] together with a detailed account of the
numerical and parametric sensitivities and a discussion of the theoretical and practical impli-
cations on the atmospheric QBO.

REFERENCES

1. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota
I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M. The quasi-biennial oscillation.
Reviews of Geophysics 2001; 39(2):179–229.

2. Lindzen RS, Holton JR. A theory of the quasi-biennial oscillation. Journal of the Atmospheric Sciences 1968;
25:1095–1107.

3. Holton JR, Lindzen RS. An updated theory for the quasi-biennial cycle of the tropical stratosphere. Journal of
the Atmospheric Sciences 1972; 29:1076–1079.

4. Eliassen A, Palm E. On the transfer of energy in stationary mountain waves. Geofysiske Publikasjoner 1961;
22:1–23.

5. Plumb RA, McEwan D. The instability of a forced standing wave in a viscous strati�ed �uid: a laboratory
analogue of the quasi-biennial oscillation. Journal of the Atmospheric Sciences 1978; 35:1827–1839.

6. Dunkerton TJ. Wave transience in a compressible atmosphere. Part II: Transient equatorial waves in the quasi-
biennial oscillation. Journal of the Atmospheric Sciences 1981; 38:298–307.

7. Plumb RA. The interaction of two internal waves with the mean �ow: implications for the theory of the
quasi-biennial oscillation. Journal of the Atmospheric Sciences 1977; 34:1847–1858.

8. McIntyre ME. On global-scale atmospheric circulations. In Perspectives in Fluid Dynamics: A Collective
Introduction to Current Research, Batchelor GK, Mo�att HK, Worster MG (eds). Cambridge University Press:
Cambridge, 2003; 557–624.

9. Galmiche M, Thual O, Bonneton P. Wave=wave interaction producing horizontal mean �ows in stably strati�ed
�uids. Dynamics of Atmospheres and Oceans 2000; 31:193–207.

10. Gill A. Atmosphere-Ocean Dynamics. Academic Press: London, 1982.
11. Prusa JM, Smolarkiewicz PK. An all-scale anelastic model for geophysical �ows: dynamic grid deformation.

Journal of Computational Physics 2003; 190:601–622.
12. Smolarkiewicz PK, Prusa JM. Toward mesh adaptivity for geophysical turbulence. International Journal for

Numerical Methods in Fluids 2004; ibid.
13. Wedi NP, Smolarkiewicz PK. Extending Gal–Chen and Somerville terrain-following coordinate transformation

on time-dependent curvilinear boundaries. Journal of Computational Physics 2004; 193:1–20.
14. Smolarkiewicz PK, Prusa JM. Forward-in-time di�erencing for �uids: simulation of geophysical turbulence.

In Turbulent Flow Computations, Drikakis D, Guertz BJ (eds). Kluwer Academic Publishers: Dordrecht, 2002;
207–240.

15. Smolarkiewicz PK, Margolin LG. MPDATA: a �nite di�erence solver for geophysical �ows. Journal of
Computational Physics 1998; 140:459–480.

16. Smolarkiewicz PK, Margolin LG. Variational methods for elliptic problems in �uid models. Proceedings of
the ECMWF Workshop on Developments in Numerical Methods for Very High Resolution Global Models,
5–7 June 2000, ECMWF, Reading, U.K., 2000; 137–159.

17. Read PL, Lewis SR, Hide R. Laboratory and numerical studies of baroclinic waves in an internally heated
rotating �uid annulus: a case of wave=vortex duality? Journal of Fluid Mechanics 1997; 337:155–191.

18. Observing Reversing Currents. http:==www.gfd-dennou.org=library=gfd exp=exp e=exp=bo=1=app.htm (10 January
2004).

19. Drazin PG, Reid WH. Hydrodynamic Stability. Cambridge University Press: Cambridge, 1981.
20. Wedi NP. Time-dependent boundaries in numerical models. Ph.D. Thesis, Ludwig-Maximilians-Universit�at

M�unchen, 2004.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1369–1374


